
Page 1

CS 111 Programing Assignment 5:

Geometric Transformation &
Morphological Operators

Submission instructions:

Please submit your code, output images and a PDF file (containing the output

images) in a single zip file to Canvas. You must also submit the same PDF file to

Gradescope.

BOTH submissions are required for full points.

Your work is due by 11:59 p.m. on Saturday, the 1st of June.

Introduction:

This programming assignment is focused on geometric transformation and morphological

operators.

You will NOT be allowed to use any OpenCV functions unless told otherwise. In this

assignment, you will work with gray and binary images only. So, use

CV_LOAD_IMAGE_GRAYSCALE when reading your images.

Page 2

Geometric Transformation:

I. Bilinear Interpolation:

a. In geometric transformation, we assume the image is a 2D function

that has a value for each point on the 2D grid.

b. The transformation maps a 2D point to another 2D point.

𝑇(𝑥, 𝑦) → (𝑥′, 𝑦′)

 If (𝑥′, 𝑦′) is on the grid, we can easily find its value, but it needs a

general solution for real numbers. The (𝑥′, 𝑦′) can be anywhere on

the 2D space not limited to the integers (grid numbers). If the query

point (𝑥′, 𝑦′) is inside the range of the image (x: 0 to N-1, y: 0 to M

– 1, for a MxN image) then the operation of finding the value for query

point is “interpolation”. If the query point is outside the coordinates of

the image the operation for finding the value is called “extrapolation.

c. One simple method of interpolation is called “nearest neighbor”. In this

method you will assign the value of the closest grid point to the query

point. Because of poor result and blockiness nature of this interpolation

method, it is used very rarely.

d. One important and widely used method for interpolation is called

bilinear interpolation. In this method it is assumed that each grid block

creates a 2D linear function and we can find the value for the query

points in each block of the grid.

e. In 1D linear interpolation you can estimate the query value between

known values. In this example we want to linearly interpolate the value

at 1.25, which is between 1 and 2.

Page 3

𝑉(1.25) = (1.25− 1)1+ (2− 1.25)3 = 0.25+ 2.25 = 2.5

f. In 2D, we calculate the linear interpolation in one direction first and

use its result to perform another linear interpolation in the other

direction , as follows:

𝑣(𝑞1) = (𝑥𝑞 − 𝑥1)𝑣2 + (𝑥2 − 𝑥𝑞)𝑣1

𝑣(𝑞2) = (𝑥𝑞 − 𝑥1)𝑣4 + (𝑥2 − 𝑥𝑞)𝑣3

Then,

𝑣(𝑞) = (𝑦𝑞 − 𝑦1)𝑣(𝑞2) + (𝑦2 − 𝑦𝑞)𝑣(𝑞1)

II. Image Resizing

a. Suppose we want to resize an image to twice of its current size. Since

we will have more pixels in the output, we should interpolate the values

between the pixels. In this work we will perform a bilinear

interpolation. To resize a image we place the four corners of the output

image on the same coordinates of the four corners of the input image

and then interpolate all the output pixels.

b. Assume you have 4x4 image and now you want to resize it to 6x6. The

four corners of the output image(6x6) is placed on the four corners of

the input image (4x4) and all output pixels (black dots) are within the

Page 4

range of the input image pixels (circles). In the following image, you

can see how the query coordinates are placed.

c. In this assignment you should write a function that scales the input

image into 𝑠 times of its input size. The function Mat Resize(Mat I, float

s) should first fill in the X and Y Mat’s that contained the query point

coordinates. Then you should calculate the query value by using

bilinear interpolation.

Mat Resize(Mat I, float s)

 Complete the function Resize(Mat I, float s) in the

“pa5.cpp”, and apply on the input image “aerial.png” and write

it in “aerial_640.png”. Submit the code and the output image

in the zip file.

Page 5

Morphological Operators:

Morphology operations are a broad set of image processing operations which process the

input binary images based on their shape. In a morphological operation, each pixel in the

image is adjusted based on the value of other pixels in its neighborhood. By choosing the

size and shape of the neighborhood, you can perform a morphological operation that is

sensitive to specific shapes in the input image.

I. Dilation and Erosion:

The most basic morphological operations are dilation and erosion.

Dilation adds pixels to the boundaries of objects in an image, while

erosion removes pixels from object boundaries. The three figures below

show the effect of erosion and dilation on a binary image. The number

of pixels added or removed from the objects in an image depends on

the size and shape of the structuring element used to process the image.

Input binary image

Dilated image

Page 6

Eroded image

The structuring element acts as a mask: the neighborhood of pixels in

the input binary image to be considered during morphological operations

will be those that correspond to the pixel values of 1 in the structuring

element. Consequently, the output of dilation and erosion will change

depending on the shape of the structuring element.

The following diagrams explain how dilation and erosion work. Assume

we start off with the following binary image and structuring element:

Left - Binary image, Right - Structuring element

As in convolution, the structuring element is centered on each pixel of

the input image, including the border pixels.

Page 7

In the figure below, all the input pixels that correspond to 1 in the

structuring element are 0. Therefore, for both erosion and dilation, the

new pixel value will not change:

Since all overlapping input pixels are 0, there is no change in the output pixel value.

For dilation, the new center pixel value is 1 if any of the overlapping

input pixel values is 1. In both the diagrams below, two input pixels with

a value of 1 overlap with the structuring element. Therefore, the new

pixel value at the corresponding center pixels will be 1.

Page 8

Dilation sets pixels on the border to 1 since at least one of the overlapping input pixels

is 1.

For erosion, the new center pixel value is 0 if any of the overlapping

input pixel values is 0. In both the diagrams below, two input pixels with

a value of 0 overlap with the structuring element. Therefore, the new

pixel value at the corresponding center pixels will be 0.

Erosion sets pixels on the border to 0 since at least one of the overlapping input pixels

is 0.

II. Opening and Closing:

Dilation and erosion are often used in combination to implement image

processing operations. Two such operations are known as morphological

opening and morphological closing. Morphological opening of an image

is an erosion followed by a dilation, using the same structuring element

Page 9

for both operations. On the other hand, morphological closing of an

image is a dilation followed by an erosion, using the same structuring

element for both operations.

Morphological opening is useful for removing small objects from an

image while preserving the shape and size of larger objects in the image.

Morphological closing is useful for filling small holes from an image while

preserving the shape and size of the objects in the image.

For this assignment, you will be modifying pa5.cpp to implement the above four

morphological operations on the provided binary image “binary.bmp”. You will generate

results using two different structuring elements: a square of size 11 and a circle of diameter

11. Both these structuring elements will be cv::Mat objects of size 11x11, however they will

have different shapes: the square will have ones in every location whereas the circle will

not. An example is shown in the figures below.

Note: While you may fix the size of your structuring elements, the functions you

write must be able to handle 2-D structuring elements of any dimension and

shape.

Note: You must make sure that the image is binary after reading it i.e. it can take

only two values: 0 & 1 (or 255). Similarly, the image you write must be of BMP

format so that image compression artifacts do not introduce other values.

Page 10

III. Dilation:

a. Write a function Mat Dilate(Mat I, Mat elem), that performs

dilation on an input binary image I using the structuring element

elem.

b. Perform dilation on the provided image “binary.bmp” using both

structural elements.

c. Save your results as “dilation_square.bmp” and

“dilation_circle.bmp”.

d. Submit your results and document them in your PDF file.

IV. Erosion:

a. Write a function Mat Erode(Mat I, Mat elem), that performs

erosion on an input binary image I using the structuring element

elem.

b. Perform erosion on the provided image “binary.bmp” using both

structural elements.

c. Save your results as “erosion_square.bmp” and

“erosion_circle.bmp”.

d. Submit your results and document them in your PDF file.

V. Morphological Opening:

a. Write a function Mat Open(Mat I, Mat elem), that performs

morphological opening on an input binary image I using the

structuring element elem.

b. Perform opening on the provided image “binary.bmp” using both

structural elements.

c. Save your results as “opening_square.bmp” and

“opening_circle.bmp”.

d. Submit your results and document them in your PDF file.

Page 11

VI. Morphological Closing:

a. Write a function Mat Close(Mat I, Mat elem), that performs

morphological closing on an input binary image I using the

structuring element elem.

b. Perform opening on the provided image “binary.bmp” using both

structural elements.

c. Save your results as “closing_square.bmp” and

“closing_circle.bmp”.

d. Submit your results and document them in your PDF file.

VII. Connected Components:

In class, you learnt how morphological operators can be used to

compute the connected components of a binary image. In this

part of the assignment, you will write a function to compute the

connected components of a binary image using morphological

operators.

Computing connected components using morphological operators

is an iterative process that involves dilation. Below we will run

through an example binary image and how connected

components will be computed for that.

Let’s assume we have the following binary image, denoted by I,

and the structural element, denoted by S:

Page 12

The first step is to select any pixel from I which is white and put

that in a new image. Let’s call that new image X0:

Image I (left) and X0 (right)

We must now compute the image X1. X1 is the dilation of X0 with

the structural element S, followed by an intersection with I. The

image on the left below shows the dilation of X0 with S. The image

on the right shows the intersection of the dilated image with I:

 (𝑋0⨁𝑆) 𝑋1 = (𝑋0⨁𝑆) ∩ 𝐼

Page 13

Next, we must compare X1 and X0. Are they equal? If so, we have

our connected component. If not, we repeat the dilation and

intersection steps above. In our case, X0 is not equal to X1,

therefore, we must continue the dilation and intersection

operation on X1 to get X2.

 (𝑋1⨁𝑆) 𝑋2 = (𝑋1⨁𝑆) ∩ 𝐼

Again, we compare X2 and X1 and find that they are not equal.

So, we repeat dilation and intersection on X2 to get X3:

 (𝑋2⨁𝑆) 𝑋3 = (𝑋2⨁𝑆) ∩ 𝐼

Page 14

Notice that now, X3 is equal to X2. Hence, our first connected

component is X3. We will copy these pixels over to a new image,

called a label image, and assign these pixels a label. A label is

simply a number assigned to a pixel. In this case, we will assign

the pixels a label of 1, since they are the first connected

component we found. The label image will look like this:

We are not done yet! There are still other connected components

in our image I. However, every time we find a component, we

must remove it from our original image and repeat. Therefore,

removing X3 from I, we get the updated I:

Now, we will repeat the same process on the updated I, i.e. select

any random white pixel, dilate and intersect, until we have

removed all connected components from it, i.e. image I is all

zeros. That is when there are no more components left in the

image.

The equation that represents finding a single connected

component is:

𝑋𝑘 = (𝑋𝑘−1⨁𝑆) ∩ 𝐼 while 𝑋𝑘 ≠ 𝑋𝑘−1

Page 15

Depending on the order of the pixel selection, the final label image

may look something like the image below. Note that each pixel

will have a label, and that pixels belonging to the same

connected component will have the same label. The

numbering of the labels might be different.

a. Write a function Mat ConnectedComponents(Mat I, Mat elem),

that computes the connected components on an input binary

image I using the structuring element elem.

b. The function should return a label image of the same size as the

input image, containing the connected component label

assignments of each pixel in the input image.

c. Compute the connected components of the provided image

“binary.bmp” using a 3x3 square structural element (i.e. all

one’s).

d. Save your result as “connected_components.bmp”. You might

need to rescale the label image between 0 and 255 to make the

label assignments visible.

e. Submit your result and document them in your PDF file.

